Breathing in all the possibilities.

On the leading edge to clear more hurdles.

No longer the unkindest cut of all.
Welcome to the newly transformed UCSF Medical Center and UCSF Benioff Children’s Hospital San Francisco newsletter—now titled “Healing Abounds” and “Leaps & Bounds,” respectively. Just by glancing at the cover, you can tell this is a more intriguing and vibrant approach to communicating our passion for pioneering breakthroughs for our patients. This publication represents another innovative way we are embarking on the greatest transformation in our 100-year history. On Feb. 1, 2015, we will witness the opening of the new children’s, women's and cancer hospitals on our Mission Bay campus. This extraordinary, integrated facility will advance more innovative methods of delivering care, while translating leading-edge research more rapidly into lifesaving treatments.

The debut of our new hospitals marks the latest chapter in our history of advancing health here in the Bay Area—and around the world. As you turn these pages, you’ll see how that transformation is making a difference, every day.

Sincerely,

Mark R. Laret
Chief Executive Officer
UCSF Medical Center and UCSF Benioff Children’s Hospitals
At 23, Vanessa Ross had a career most Hollywood hopefuls would envy—steady work in TV and films and a solid resume that didn’t include any detours. However, she also had an abnormality in her brain that in 2008 triggered an epileptic seizure during a flight home to San Francisco. Ross remembers being on the plane, then in an ambulance. “I had no idea what was happening,” she says.

She spent the next five agonizing years searching for answers and looking for a way to prevent the seizures that had become a recurring and unpredictable fact of life. As each episode left her feeling increasingly foggy, she began having trouble remembering lines and even the names of actors she was working with.

When doctors couldn’t find a cause or effective medications for the seizures, Ross consulted neurologist Dr. Tina Shih at UCSF Medical Center, a major referral center for people with severe and uncontrolled epilepsy. Dr. Shih says medications that quiet overexcited neurons in the brain help most patients, but when drug therapy doesn’t work, minimally invasive brain surgery may offer the best hope.

Dr. Edward Chang, who specializes in the surgical treatment of uncontrollable epilepsy using advanced brain mapping techniques, recalls the breakthrough in Ross’ care came when the UCSF team saw something on an MRI brain scan other doctors had missed—a small malformation at the bottom of her brain.

“We were tremendously excited that we could pinpoint where the seizures were coming from. And Vanessa was ecstatic that someone had finally figured it out,” says Dr. Chang.

After surgery to correct the problem, Ross is finally free of seizures and back to a busy bicoastal filming schedule. “My biggest goal is to have my patients return to the productive lives they want to lead,” Dr. Chang says. “That's everything to me.”

For more about Vanessa Ross and her experience, go to www.ucsfhealth.org/vanessaross.

For a more in-depth version of this article, click here.
Spin instructor Russell Colunga was out of breath, out of time and in desperate need of a double-lung transplant. 

For years, Russell Colunga led a double life. By day, he was head of library media services at San Francisco State University; in his off-hours, he taught a dozen exercise and spin classes a week. But Colunga’s energetic pace slowed in 2010, when he became increasingly short of breath.

After what he calls a “long haul” with a series of doctors, he was referred to UCSF Medical Center. The diagnosis was idiopathic pulmonary fibrosis, which scars the lungs, making breathing increasingly difficult. The disease has a slow course in some people, but for Colunga, it progressed rapidly. Because there is no medical treatment, his only option was a double lung transplant.

Dr. Jasleen Kukreja, a thoracic surgeon and program director of the UCSF Lung Transplant Program, says Colunga was an excellent candidate for the procedure. “What really impressed me when I met him was his energy. Even though he could barely breathe, he was still teaching people. So we placed him on the national organ waiting list. And remarkably, just two weeks later, lungs became available for him.”

When he learned about the donor lungs, Colunga had one hour to get to the hospital for surgery. “I was crying and shaking, but I was never afraid,” says Colunga, who was aware that the UCSF Lung Transplant Program was the most successful in the nation. “From the minute I met Dr. Kukreja, I knew I was in good hands—not just because of her skill, but also her kindness,” he says.

The eight-hour surgery went perfectly. So did Colunga’s surprisingly rapid recovery, aided by an exceptional transplant team. “He flew in and out of the operating room and the hospital, then back to his life teaching spinning,” Dr. Kukreja says. And Colunga? “I felt joy,” he says. “Overwhelming joy.”

For more about Russell Colunga and his experience, including a video, go to www.ucsfhealth.org/russellcolunga.

For a more in-depth version of this article, click here.
On the leading edge to clear more hurdles.

The Orthotics & Prosthetics Center at Mission Bay helps competitive amputees hit the ground running again.

You’d think the amputation of a foot or leg, or possibly both, would end an athletic career forever. And until recently, you would have been right.

But not any longer. Athletes in UCSF Medical Center’s Amputee Comprehensive Treatment (ACT) program, located at the Orthotics & Prosthetics Center at Mission Bay, are literally back on track, jumping, sprinting and clocking eight-minute miles. They’re running half marathons and once again dreaming of international competition in strenuous, highly competitive sports.

Advances in artificial-limb technology, customized prosthesis fitting, and sports training are responsible for getting serious athletes back into action after amputation. New-generation artificial limbs are even allowing ACT athletes to scale climbing walls and deliver the toughest roundhouse kicks. And the program’s boot camp? It’s unlike anything you’ve ever seen.

That’s because the program is the first of its kind for non-military amputees. Here, trauma, cancer, infections or congenital conditions that have led to amputations are no match for athletes determined to succeed. A multidisciplinary team provides access to the resources that take these determined individuals to the next level.

“A thousand people could select the same prosthetic, but how it is constructed, including the socket and alignment, and how the patient is trained to utilize the device are where the true customization comes in,” says Matthew Garibaldi, a certified prosthetist/orthotist and director of the Orthotics & Prosthetics Center.

“The device, customization and training are the three essential elements that distinguish our program.”

In addition to athletes, the Orthotics & Prosthetics Center serves amputees of all ages, circumstances and aspirations. For information, call (415) 353-7491 or visit www.ucsfhealth.org/prosthetics.

For a more in-depth version of this article, click here.

Fast Fact

The prosthetic “blades” are not metal—they are made of carbon fiber.

Fast Fact

The blade delivers up to 92% elastic “spring” (human legs deliver 93-95%).
What if you accompanied your spouse to a doctor appointment and ended up having surgery yourself? That’s exactly what happened to a San Francisco man diagnosed with a pituitary-related disorder called acromegaly while attending his wife’s neurosurgical consultation at UCSF Medical Center. He later underwent surgery to remove a pituitary tumor that had plagued him for years by slowly distorting his facial features, while causing headaches, fatigue and joint pain.

Dr. Lewis Blevins, medical director of the California Center for Pituitary Disorders at UCSF Medical Center, says the story illustrates how pituitary problems—usually caused by benign tumors—often go undiagnosed.

“Dr. Lewis Blevins, medical director of the California Center for Pituitary Disorders at UCSF Medical Center, says the story illustrates how pituitary problems—usually caused by benign tumors—often go undiagnosed.”

Big things come in little glands.

The tiny pituitary gland affects so many of our bodily functions, yet it’s often overlooked. Not so at UCSF Medical Center.

“The tiny pituitary gland affects so many of our bodily functions, yet it’s often overlooked. Not so at UCSF Medical Center.”

“In the husband’s case, no one had ever put two and two together because most doctors don’t have a lot of experience with the pituitary gland,” he says.

The challenge of diagnosing pituitary disorders is compounded by the range of problems they cause, from vision loss and headaches to sexual dysfunction and diabetes. That’s because the pea-sized pituitary, located at the base of the brain, controls virtually every function in the body, producing hormones that direct the thyroid, adrenals and sex glands to make hormones of their own. “It’s like the operating system of a computer, running behind the scenes, doing things no one thinks about until something happens,” Dr. Blevins says.

He established the pituitary disorders center in 2007. Since then, the center has earned a reputation as having one of the most advanced programs in the nation.

“We built a Field of Dreams and put the best players on the field,” says Dr. Blevins of the center and its multidisciplinary staff. “We perform more pituitary surgeries than anywhere in the country and our outcomes are among the best. This is due to our surgical skill and the fact that we really listen to our patients, focus on their symptoms and understand their needs.”

For more on Dr. Blevins and his work, go to www.ucsfhealth.org/blevins_interview.

For a more in-depth version of this article, click here.
No longer the unkindest cut of all.

To treat colorectal cancer, UCSF Helen Diller Family Comprehensive Cancer Center specialists employ laparoscopic surgery, which requires only tiny incisions and leaves virtually no scars.

It’s a kinder, gentler approach to colon surgery—and it’s made a huge difference in the lives of countless people. At one time, patients undergoing an operation for colon cancer had to endure large incisions and significant scarring. But laparoscopic surgery, performed through one or more tiny openings, has made surgical scars nearly invisible.

Lata Mohan, 73, learned about laparoscopic surgery firsthand in 2012 when she was diagnosed with colon cancer. Unlike many people, she had warning signs of colorectal cancer, including rectal bleeding and constipation. When she finally saw her doctor, a colonoscopy revealed a small colon tumor that needed to be removed quickly, before it could spread.

Although Mohan was referred to a surgeon near her Fremont home, she and her family chose UCSF’s cancer center because of its outstanding postoperative care and the reputation of noted laparoscopic surgeon and colorectal surgery chief, Dr. Madhulika Varma. “From the minute we met her, we had confidence that we were in the best hands,” Mohan explains.

Mohan’s surgery took place soon after the consultation, and she was out of the hospital four days later, without the need for chemotherapy or radiation. “It’s a very positive story,” Dr. Varma says.

Catching the cancer early worked in Mohan’s favor. So did Dr. Varma’s surgical skill and innovative thinking. “We have newer cameras, instruments and techniques like robotic surgery and other ways in which we’re trying to reduce incision size and make procedures less invasive,” Dr. Varma says.

For Mohan, cancer was life-changing. “It made me aware of how fragile life is,” she says. Although she’d never had a colonoscopy, she now gets one every year.

“Screening is important,” relates Dr. Varma. “Colon cancer is entirely preventable if precancerous polyps are found and removed in time.”

Screening often starts at age 50—usually with a simple, noninvasive test. Those with a history of colorectal cancer should get screened sooner.

For more on Lata Mohan’s experience, visit www.ucsfhealth.org/latamohan.

For a more in-depth version of this article, click here.
No longer the unkindest cut of all.
To treat colorectal cancer, UCSF Medical Center specialists employ laparoscopic surgery, which requires only tiny incisions and leaves virtually no scars. It's a kinder, gentler approach to colon surgery—and it's made a huge difference in the lives of countless people.

At one time, patients undergoing an operation for colon cancer had to endure large incisions and significant scarring. But laparoscopic surgery, performed through one or more tiny openings, has made surgical scars nearly invisible.

Lata Mohan, 73, learned about laparoscopic surgery firsthand in 2012 when she was diagnosed with colon cancer. Unlike many people, she had warning signs of colorectal cancer, including rectal bleeding and constipation. When she finally saw her doctor, a colonoscopy revealed a small colon tumor that needed to be removed quickly, before it could spread.

Although Mohan was referred to a surgeon near her Fremont home, she and her family chose UCSF Medical Center because of its outstanding postoperative care and the reputation of noted laparoscopic surgeon and colorectal surgery chief, Dr. Madhulika Varma. "From the minute we met her, we had confidence that we were in the best hands," Mohan explains.

Mohan's surgery took place soon after the consultation, and she was out of the hospital four days later, without the need for chemotherapy or radiation. "It's a very positive story," Dr. Varma says. Catching the cancer early worked in Mohan's favor. So did Dr. Varma's surgical skill and innovative thinking. "We have newer cameras, instruments and techniques like robotic surgery and other ways in which we're trying to reduce incision size and make procedures less invasive," Dr. Varma says.

For Mohan, cancer was life-changing. "It made me aware of how fragile life is," she says. Although she'd never had a colonoscopy, she now gets one every year. "Screening is important," relates Dr. Varma. "Colon cancer is entirely preventable if precancerous polyps are found and removed in time."

Screening often starts at age 50—usually with a simple, noninvasive test. Those with a history of colorectal cancer should get screened sooner. For more on Lata Mohan's experience, visit www.ucsfhealth.org/latamohan.
Epilepsy: Finding the missing piece of the puzzle.

Lewis Carroll, Fyodor Dostoyevsky and Charles Dickens had it.

So do Prince, Olympic athlete Chanda Gunn and Danny Glover. “It” is epilepsy, one of the oldest and least understood of human diseases, which affects about 2 million people in the United States and close to 50 million worldwide.

Epilepsy is a broad term for a variety of neurological disorders that cause seizures—sudden bursts of abnormal electrical activity in the brain. During a seizure, a small group of brain cells (neurons) begins to fire much faster than normal, up to 500 times a second. Then more neurons join in, and the electrical storm spreads, sometimes through the entire brain.

Most seizures pass quickly, but symptoms can be severe, ranging from a few seconds of unresponsiveness to falls, convulsions and loss of consciousness. Depending on the areas of the brain involved, some people experience just a few seizures a year while others have dozens or more a day.

Anything that disturbs normal neuron activity can cause seizures, such as genetic susceptibility, illness, head trauma, stroke, brain injury before birth, or abnormal brain development in early childhood. Often, though, the cause remains unclear.

Most people with epilepsy can be successfully treated with anti-epileptic medications, which help prevent abnormal neuron firing. But for some patients who don’t respond to well-administered drug therapy, brain surgery may be the best option, says Dr. Tina Shih, a neurologist at the Epilepsy Center at the UCSF Medical Center, which has one of the largest and most respected epilepsy surgery programs in the country.

“To qualify for surgery, patients must have an area in the brain that we can identify through diagnostic testing as the source of the seizures, and we must be able to remove that area safely,” she explains.

At UCSF, advanced imaging tests are used to locate these areas, including simultaneous electroencephalographic (EEG) and video monitoring, SPECT scans, PET scans and high-resolution magnetic resonance imaging (MRI). When read by expert imaging specialists, the tests may detect abnormalities other evaluations have missed.

Dr. Edward Chang, a UCSF neurosurgeon whose research focuses on improved decision making and safety in epilepsy treatment, points out, “Sometimes it’s about the machines we have that are really state-of-the-art, but more important are the people who are looking at the images.”

That was certainly true for San Francisco actor Vanessa Ross, who developed epilepsy at age 23. After years of trying, and failing, to find the cause of the recurrent seizures that were affecting her memory, personal life and career, Vanessa consulted specialists at UCSF. They detected a small malformation at the bottom of her brain that had been overlooked by other doctors for years.

“Pinpointing exactly where her seizures were coming from radically changed our thinking about how to pursue her treatment,” Dr. Chang says. “And she was ecstatic that someone had finally figured it out.”

Vanessa says the relief was overwhelming. “It had been years. And then to finally have that certainty was amazing.”

Still, the decision to have the operation she needed wasn’t easy. Epilepsy surgery has risks. Vanessa knew the procedure had the potential to make her memory problems worse and alter her appearance.

“It was really scary to think about having brain surgery. But I absolutely trusted Dr. Chang—he’s a wonderful person—and he and the UCSF team figured out a way to do the operation so they didn’t have to shave my head. They were very conscientious about my career and the importance of maintaining my appearance.”

“Our goal was to stop Vanessa’s seizures without causing any side effects,” Dr. Chang explains. “We had to clearly define not only where the seizures were coming from, but also where critical brain functions were located. This would allow
us to remove only the part of the brain causing the seizures while protecting the parts that were important for her memory. And because we knew that she was always going to be in front of the camera, probably within weeks of the surgery, we used a minimally invasive approach so she wouldn’t have any physical signs of the operation.”

The scars of the surgery may be undetectable, but the results are obvious.

“The seizures just stopped,” Vanessa says. “I was having them every six days and since the surgery, I haven’t had a single one. I can exercise again and have a personal life. And I’m supposed to be filming all over the country this year. I’m finally getting my life back.”

But epilepsy surgery, currently the only treatment with the potential to cure the disease, isn’t always successful. “Some lesions are more amenable to surgery than others,” Dr. Shih explains. “People with mesial temporal sclerosis (a type of epilepsy caused by damage to the brain’s temporal lobe) have a high chance of success, up to 80 percent of them become seizure-free. People with a normal MRI have less successful outcomes, because without a clear picture of where seizures start, surgery is much more difficult.”

Success also depends on how a patient defines it. “If a person experiences a reduction in seizures, is that enough?” Dr. Shih asks.

“If you have fewer seizures but still can’t drive, is that a good outcome? The fact is, most people want to be seizure-free, and that is what we hope to achieve.”

Dr. Chang adds: “Every day we’re getting closer to understanding how the brain works and trying to apply this knowledge toward safer and better surgery that can stop this disorder in its tracks. I chose neurosurgery because I like being able to use my hands in a very specific, technical way and I also like the intellectual pursuit of trying to understand how the brain works. But most of all, I like the fact that I can help my patients at their time of greatest need.”

For more about the UCSF Epilepsy Center, visit www.ucsfhealth.org/epilepsy.
Lung transplants: A second chance at life.

The facts are impressive: The UCSF Medical Center Lung Transplant Program has the best track record in the nation for extending patients’ lives.

In 2014, the Scientific Registry of Transplant Recipients identified the UCSF program as the only one with better than expected outcomes two years in a row: “The one-year survival rate for UCSF patients is 93.6 compared with an expected survival rate of 84.3. The program is also among the highest in overall outcomes, even though UCSF routinely accepts patients so ill other centers have rejected them,” says Dr. Jasleen Kukreja, a thoracic surgeon and program director of the UCSF Medical Center Lung Transplant Program.

That record of excellence and success was a boon for Russell Colunga. A full-time San Francisco State University media director and dedicated part-time group exercise instructor, Colunga developed idiopathic pulmonary fibrosis when he was 61 years old. The disease, which causes scar tissue to form in and around air sacs inside the lungs, makes breathing increasingly difficult. There is no medical treatment, and for people with severe disease like Colunga, the only option is a lung transplant.

Colunga was an excellent transplant candidate because he was physically active and strong. But his fitness also worked against him. In the lung transplant system, donated organs are allocated to the sickest patients first. Colunga was listed at number 48 out of 100, and he knew he might have a long wait for a match.

In the meantime, life was becoming harder. Colunga was using supplemental oxygen, but even that didn’t help much.

“It was a five-hour process just to shower and do daily chores,” he says. “I couldn’t get my hands to my head to shampoo my hair, and climbing the stairs to my house was nearly impossible.” Although his doctors encouraged him to keep exercising, he finally had to quit teaching classes in May 2012.

Against all odds, lungs from a teenage donor became available for Colunga in less than two weeks. That was remarkable, not only because Colunga wasn’t near the top of the transplant list, but also because viable donor lungs are in short supply—only about 20 percent of donated lungs are acceptable for transplant. Delicate lung tissue is often damaged by ventilators or is too bruised by traumatic injury to transplant.

The donor lungs were in perfect condition, however. Colunga got the call around midnight and was in the operating room a few hours later.

“I was never fearful because I knew I was in good hands,” he says. “Dr. Kukreja is a miracle worker. She’s small and has to stand on a box to do the surgery, but she truly does work miracles.”

Colunga remembers waking after surgery and seeing his partner, sister and anesthesiologist at his bedside. He also remembers taking the first breath with his new lungs.

“It felt fantastic. It was the first deep breath I had taken in years. And I felt overwhelming joy at being able to breathe and seeing familiar faces, loved ones, at the foot of my bed, smiling with joy, too.”

Dr. Kukreja says although Colunga’s surgery went perfectly, and he recovered very quickly, his experience isn’t unusual; most UCSF patients do exceptionally well although lung transplants present unique challenges.

“With every breath, the lungs are exposed to potential airborne pathogens or toxins, which makes it harder to care for a lung transplant patient than someone with a kidney or even a heart transplant,” explains Dr. Kukreja. Furthermore, chronic rejection, which causes the lung’s airways to slowly deteriorate, remains an unsolved problem.

“There’s such astonishing teamwork, collaboration, expertise and dedication that goes into caring for each of our patients. Once they come into our program, we’re in it with them for life. It is like a marriage,” says Dr. Kukreja.

Colunga’s life has changed. A self-confessed foodie, he now has dietary restrictions. He must be
scrupulous about avoiding infections because the anti-rejection drugs he takes suppress the immune system. If he’s around someone who is sick, he either has to leave or wear a mask, and he’s already had a couple of setbacks. Still, it’s a small price to pay.

“To have the life I have now is unbelievable to me,” he says. “I’m back teaching classes five days a week. Just short of a year after the surgery, I took a spin class. The instructor wanted us to do standing sprints, and I said to my lungs, ‘I know you haven’t done this before, but let’s go.’ For that, I’m overwhelmingly grateful to Dr. Kukreja and UCSF.”

As for Dr. Kukreja: “I want to see more and more people like Russell,” she says. “That’s what keeps me going. It’s the satisfaction I have when I see people are able to breathe once again and live their lives to the fullest. It’s a very, very satisfying experience.”

The first human lung transplants were performed in the 1960s, but it would be another 20 years before patients who received new lungs had a good chance of living with them. Today, despite significant progress, transplants for people with end-stage lung disease remain more challenging and have lower survival rates than other solid organ transplant procedures.

“No one knows why, but most people’s bodies reject the new lung sometime after the first year. The good news is that we are better able to handle that rejection than ever before,” Dr. Kukreja says. “Today, more than 50 percent of our patients survive at least five years, and at UCSF, we are continuing to develop new technologies to make the lungs last even longer.”

To hear Russull Colunga describe his lung transplant journey, go to www.ucsfhealth.org/russellcolunga.
Hitting the ground running: The amputee comprehensive treatment program.

As competitive runners, cyclists, climbers, boxers and soccer players, they numbered among the athletic elite.

Some were potential Olympians. Then an infection, tumor or serious injury resulted in the amputation of a lower limb, tragically changing their lives forever.

Yet many athletes are getting back into the action through an innovative program offered by the UCSF Orthotics & Prosthetics Center at Mission Bay. The Amputee Comprehensive Treatment (ACT) program, the first of its kind in the nation for non-military patients, combines customized prosthetic technology with rehabilitative care to help amputees return to physically active lifestyles.

Similar to the exceptional program developed for injured soldiers at Walter Reed National Military Medical Center, ACT is helping amputees resume the sports they previously enjoyed. “It fills a clinical void in what has long been considered a ‘gray area’ in rehabilitation for athletic amputees,” says Matthew Garibaldi, a certified prosthetist/orthotist and director of the Orthotics & Prosthetics Center. “After undergoing surgery, patients typically would have three to four weeks of physical therapy, and then set out into the world without any further assistance or specialized training,” Garibaldi says. “Our patients are walking four weeks after surgery, and running after six.”

The distinctive, J-shaped running blades that caused a sensation at the London 2012 Olympic Games are just one example of the advanced prosthetic devices making it possible for amputees to resume strenuous, competitive sports. Designed to resemble the hind leg of a cheetah, the fastest land animal on earth, these blades are available for running and other track and field events.

Each blade is composed of strong yet flexible, lightweight carbon fibers that expand and contract, efficiently storing and releasing energy as the athlete runs. Acting as a vertical shock absorber, the blade allows the athlete to sprint with a more natural gait, while protecting the remaining joints on the amputated limb. As the blade releases energy, it acts like a spring and propels the athlete forward.

Innumerable combinations of prosthetic feet and knees are available for additional sports, including cycling, climbing and martial arts. Yet selecting the appropriate prosthetic component is just one element of a comprehensive treatment protocol that also includes extensive evaluation and training to optimize each patient’s functional outcome.

As a board-certified prosthetist specializing in advanced lower-extremity prosthetic care, Garibaldi leads the multidisciplinary ACT team, which includes orthopaedic surgeons, physiatrists, physical therapists, professional trainers and nutritionists. Access to the full range of services offered by the UCSF Department of Orthopaedic Surgery further maximizes each patient’s physical potential.

“A thousand people could select the same blade, but how it is constructed, including the socket and alignment, and how the patient is trained to utilize the device are where the true customization comes in,” Garibaldi says. “The device, customization and training are the three essential elements we consider the ‘trifecta’ of professional prosthetic care, and what distinguishes our program.”

The ACT treatment model is redefining the concept of rehabilitative care following amputation. With the program’s impressive track record for improved functional outcomes, Garibaldi looks forward to creating and sharing the best practices that may ultimately benefit amputees nationwide.

In the meantime, awareness about the athletic possibilities and interest in Paralympic sports continue to grow. And so do the expectations of amputees who are seeking to push the boundaries of athletic performance. The ACT team has already begun working with a new, highly competitive generation of serious athletes: teens and young adults who have literally grown up with the new prosthetic technology.

“These younger amputees were never limited by the earlier, remedial prosthetics that would not allow them to run,” Garibaldi says. “The idea of having a special athletic prosthesis that allows them to play competitive sports is already second nature to them.”
Adds Garibaldi, “I can’t begin to convey the impact ACT has had on the lives of participants. The tears of joy on the faces of people who feared they’d never walk, run or climb again speak to the renewed hope in their hearts and serve to confirm for me the timeliness of this program.”

For more information or to schedule a consultation at the Orthotics & Prosthetics Center at Mission Bay, call (415) 353-7491.
The pituitary, a pea-sized gland behind the nose, has never gotten much respect. Few people can describe what it does or where it’s located in the body. And although this tiny, but powerful, gland is now known to have a hand in most bodily processes, including the release of hormones from the thyroid, adrenal and sex glands, it’s never had the cache of say, the heart or brain. But that doesn’t mean it’s any less prone to problems.

The California Center for Pituitary Disorders at UCSF Medical Center provides comprehensive neurosurgery and neuroendocrine care to patients with newly diagnosed or pre-existing tumors and other pituitary disorders. “One of our goals is to prevent missed diagnoses by taking the time to really listen to patients and fully focus on their symptoms and unique needs,” says Dr. Lewis Blevins, medical director of the center. “We have a way of thinking and practicing the art of medicine that offers scientific substance combined with personalized care.”

A variety of disorders can affect the pituitary. But by far the most common are tumors called adenomas. Although almost always benign, adenomas can affect vision, suppress the production of pituitary hormones, or, conversely, produce their own hormones, leading to a hormonal free-for-all in the body.

Some adenomas, especially prolactinomas (prolactin-producing tumors that reduce testosterone levels in men and estrogen levels in women) can be effectively controlled with medications. But most pituitary tumors must be removed with surgery.

Twenty years ago, pituitary surgery involved cutting through the gums and septum—the dividing wall between the two nostrils. It was a painful and disfiguring practice that required a lengthy hospital stay. Now, surgeons at UCSF Medical Center offer a minimally invasive procedure called endoscopic endonasal transsphenoidal surgery. Amazingly, this technique enables doctors to reach the pituitary gland and remove a tumor through the nostril with no incisions necessary. The surgery is much less invasive than earlier procedures, recovery is rapid and the risk of complications is greatly reduced.

More pituitary tumor operations are performed at UCSF Medical Center than any other hospital in the United States. Studies have shown that the most experienced surgeons, those performing more than 500 pituitary surgeries a year, have the highest cure rates (defined as complete removal of the tumor) with the fewest complications and recurrences.

“The cure rate certainly depends on tumor size and invasiveness, but it goes beyond that,” Dr. Blevins says. “Our surgical team, directed by Dr. Sandeep Kunwar, is expert at removing pituitary tumors, including those that extend into the brain, and restoring normal hormone function. Most patients go home the day after surgery and have extremely good outcomes because of the surgical skill and operative techniques we employ.”

Yet symptoms of a pituitary tumor are often vague and nonspecific—headache, weight gain, missed periods. Because many physicians have little training in these disorders, pituitary tumors aren’t high on the list of diagnostic possibilities and are often overlooked.

“Unfortunately, a lot of women go to their gynecologist complaining of irregular periods and the gynecologist says, ‘Well, many of my patients have irregular periods,’ and doesn’t dig any deeper,” explains Dr. Blevins. “Or a man may have erectile dysfunction and get a prescription for Viagra® because it’s easier than having a thorough evaluation to determine why his testosterone levels are low.” In both cases, he says, a pituitary tumor may be to blame.

“Our goal was to develop a program that would be a model for a multidisciplinary pituitary clinic with a team approach to patient care,” Dr. Blevins says. “Our cure rates and patient satisfaction results indicate we’ve done a good job. We have a nationwide reputation as the people who got it right.”
Dr. Blevins emphasizes the importance of practicing personalized medicine. “There could be 100 patients with the same disease but I would see 100 different illnesses,” he explains. “The difference is in the way the disease affects the individual—his or her job, lifestyle, spouse and kids. Disease is simple; illness is everything else, including a patient’s psychological reaction to being sick. Each person’s illness needs to be treated differently.”

For more information on the California Center for Pituitary Disorders at UCSF, go to www.ucsfhealth.org/pituitarycenter.
Colorectal cancer: Lata Mohan’s story.

Lata Mohan had never had a screening test for cancer when she was diagnosed with stage I colon cancer in 2012.

But she was lucky; unlike many people, she had symptoms such as rectal bleeding and severe constipation that sent her to the doctor. And because her cancer hadn’t spread beyond the inner layers of the colon, there was a good chance it could be cured with minimally invasive surgery.

Still, the diagnosis was a shock. “I had always been the caregiver. I never thought I would be sick myself,” Mohan says.

Although referred to a surgeon near her Fremont home, Mohan and her family decided to seek treatment at UCSF’s Helen Diller Family Comprehensive Cancer Center, the only National Cancer Institute-designated comprehensive cancer center in the Bay Area and one of just 41 such centers nationwide. Comprehensive cancer centers are world-class institutions providing the most advanced therapies based on years of experience treating people who have the disease.

Mohan’s surgeon was Dr. Madhulika Varma, the chief of colorectal surgery who is widely known for her expertise in minimally invasive procedures. Performed through a few keyhole-sized openings or a natural orifice instead of a large incision, minimally invasive surgery leads to significantly improved outcomes compared with open abdominal procedures. Patients typically experience less blood loss and postoperative pain, shorter hospital stays and fewer complications. They also have a much better cosmetic result, with scars that in time may be nearly undetectable.

At UCSF, 80 percent of colorectal surgeries are performed using minimally invasive techniques. This includes robotic surgery and transanal endoscopic micosurgery, which removes early-stage rectal tumors though the rectum, without the need for a surgical incision.

“We have many ways in which we’re trying to reduce the size of incisions and make colorectal procedures less invasive,” Dr. Varma says. “We’re also getting more new procedures in our pocket to treat people who would previously have been untreatable. But it’s not just innovation without critical evaluation. We don’t do things just because they’re new; we do things because we really think they’re going to help the patient.”

Fortunately, Mohan’s early-stage cancer was highly treatable. Dr. Varma removed the tumor through three small incisions, and four days later, Mohan left the hospital with minimal scarring and no need for chemotherapy or radiation.

“My experience was fantastic,” she says. “The surgery and postsurgical care were wonderful. My family never left my side. Neither did the superb doctors who checked on me constantly and the nurses who were always cheerful in spite of their demanding jobs. Everyone helped keep my spirits up.”

Now, almost two years later, Mohan continues to do well. She and her husband live with a daughter and two grandchildren; their son lives nearby. The entire family has been immensely supportive and encouraging, and life is good.

Still, Mohan says cancer changed her. “I realized how fragile life can be, and I appreciate every day,” she says. “I have become more giving and openhearted and I am so thankful to my family and UCSF.”

Mohan now gets a yearly colonoscopy to make sure the cancer doesn’t return, and she encourages others to be screened, too. Unlike screening tests for other cancers, which are meant to catch early-stage disease, colonoscopy can actually prevent cancer by finding and removing premalignant growths before they become cancerous.

“Remain happy,” Mohan advises, “Have faith, and take care of your health.”

For more information on colorectal surgery, go to www.ucsfhealth.org/colorectalsurgery.